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Optimisation physical scheme for weather forecast systems is an essential part of
the development of efficient real-time weather forecasts. This research examines
the use of weather type to cluster and to optimise the physical scheme of numeri-
cal weather prediction systems in the south-east coast of Japan in the Tokyo area.
In this study, we calibrated and validated physical schemes by the observed rain-
fall at gauge stations around Tokyo, we have classified these per weather circula-
tion. We used 24 ensemble members and 20 heavy rainfall events classified in
4 weather types to validate the scheme. The physical scheme ensemble construct
by the association of micro-physics, cumulus, planetary boundary and radiative
scheme and then, simulated with the weather research and forecasting model. We
observed limited physical scheme variability for a pool of station within a weather
type cluster. However, it shows large variations among stations. Then, we com-
puted the rainfall Cumulative Probability Distribution Function curves which indi-
cated wide differences. It suggests that clustering presents interesting properties.
The results permitted (a) the selection of an optimal physical scheme per weather
type, (b) the development of bias correction curve specific to weather type and
(c) the evaluation the spatial distribution of regional bias correction.
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1 | INTRODUCTION

The south-east coast of Japan around the region of Tokyo
(called Kanto/Koshin region) is a largely urbanised area that
is subject to heavy rains and strong winds resulting from
different mechanisms such as tropical cyclones (Hayasaki &
Kawamura, 2012) events and westerly winds. In the winter
(DJF), the Siberian high developed. NW wind prevailed
bringing sunny sunshine downstream of mountain area with
occasional snowfall. In spring (MAM), the migration of
cyclones that alternately move eastward across Japan. The
temperature rise in the region of Tokyo and anticyclone sys-
tems installed during the second half of spring. During early
June and middle July, rainy season (called Baiu) appended

caused by stationary front that forms where warm maritime
tropical air mass meets cool air from the maritime air
masses. Largest rainfall occurred in September due to active
autumn rain front and tropical cyclones. In October, frequent
anticyclone brings sunny condition in the Kanto area. Cold
northwesterly flows across Japan increase in November (From
JMA, 2017 Climate of Kanto/Koshin district).

The open source software weather research and forecast-
ing (WRF), used for the dynamic downscaling method, is a
popular dynamic downscaling model used for operational
weather forecast and regional climate modelling
(Skamarock et al., 2008). One of the core challenges of
dynamical downscaling forecast set-up is the selection of
the physical schemes according to the location, scale,
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geography and weather events. In this paper, we focus
on an ensemble of physically based parametrisation to simu-
late several extreme weather events in the south-east of
Japan.

The regional dynamic downscaling method is a nested
method to increase resolution and physical-based modelling
of numerical weather prediction (NWP). It mainly consists
of increasing the resolution of the simulation grid while
using the boundaries of global forecast models and using
the potential of physical scheme parametrisation. It gives a
better capture of large scale processes such as hurricanes
and allow local scale physical phenomena such as convec-
tive systems. Hence, it also allows the use of full physically
based modelling schemes such as convective systems or
cumulus and avoids parametrisation elements.

The optimisation of physical schemes is a standard
method for regional weather forecast The experiments con-
ducted by Jankov et al., (2005) used 18 ensemble members
with a 12 km model resolution. The ensemble was created
by the use of three microphysics (mp) parametrisations, two
planetary boundary conditions (pbl) parametrisation and
three cumulus (cu) parametrisation. Eight mesoscale con-
vective systems were investigated during warm season over
the South Central United States of America. The results
confirmed the importance of the cu over the pbl scheme for
rainfall sensitivity but also mentioned the need for different
bias correction for various configurations.

A series of studies from Evans et al., (2012), Ji et al.,
(2014) and Gilmore et al., (2016) investigated the optimisa-
tion of a physics ensemble over the East coast of Australia
for extra-tropical low-pressure associated with heavy rain-
fall. All of them used 36 ensemble members, and a nested
domain was used with a 50 and 10 km resolution. Evans
et al. (2012) concluded that none of the members was found
to be the best of the four heavy rainfall investigated. But, it
was possible to identify groups of model with the best per-
formance. The authors advised for the combination of the
Mellor-Yamada-Janjic (MYJ) planetary boundary layer
scheme and the Betts-Miller-Janjic cumulus scheme (BMJ).
Ji et al. (2014) extended the study, they used eight events
and started to identify events in classes or cluster such as
“lows in westerlies”, “Easterly trough low”, “decaying cold
front”, “Inland trough low”, “Extra tropical cyclone” and
“Wave on a front low”. The authors stressed out the impor-
tance of ensemble average over a medium performance of a
single scheme to obtain improvement in both spatial repre-
sentation and quantity of rainfall. Finally, Gilmore
et al. (2016) focused on a specific extreme event on the
south-east coast of Australia and optimised scheme for the
single June 8, 2007 cyclone event. In their experiments, the
potentials of hourly rainfall forecasts was investigated and
highlight that, cumulus and planetary boundary layer found
to be the cause of the largest difference between physical
schemes.

Other authors focused on specific categories of events
such as tropical cyclone. Islam et al. (2015) used a
12 ensemble member with a 5 km resolution focused on the
West Pacific Ocean. The authors concluded that, none of
the schemes could be identified as optimal one but, cumulus
scheme was designed as the most sensitive to rainfall inten-
sity prediction to target the general rainfall underestimation
of the system. Several researchers already mentioned the
potential in classifying weather events by their categories
but, without using automatic classification such as weather
type. Furthermore, Jankov et al. (2005) already highlighted
the need of appropriate bias correction associated with par-
ticular physical schemes association.

Classification of weather types is a well-described
method mainly used in climate study rather than weather
forecast optimisation. It is an adequate and powerful
method to obtain, daily regular and automatic weather
classification day by day (Rousi et al., 2014), that can be
computed over a numerical grid. Therefore, it can be used
to obtain significant statistical classification that character-
ise weather events. Moreover, Weather classification can
extract finer detail than average temperature or rainfall
parameters. Furthermore, the classification can be used for
climate or weather system to obtain information on partic-
ular weather conditions. While classification methods can
differ, weather type classification result presented a con-
venient limited number of members (Huth et al., 2008)
that are characteristics of particular weather conditions. It
has various uses domains of application such as cyclone
hazards and air pollution, climatology and flood preven-
tion. Hence, weather typing contained an association of
parameters which summarised air mass specificity at dif-
ferent heights (typically 200, 500 and 925 hPa). There-
fore, it can be related to synoptic scale condition (Bower
et al., 2007; Riediger & Gratzki, 2014). In addition to
wind direction, further parameters classifications can be
combined such as the rainfall cumulative, the sunshine
duration, relative humidity and minimal and maximal
temperatures.

The Lamb weather type (LWT) by Lamb (1972) and the
Grösswetterlagen catalogues (Hess & Brezowsky, 1952)
based on pressure were the earliest tentative of weather clas-
sification based on physical parameters. In addition to this
systematic classification, more subjective classifications
were conducted by Jones et al., (1993) that prefigured the
weather type approach as a semi-subjective approach. For
the LWT, the indices computation used six different param-
eters, the southerly flow (SF), the westerly flow (WF), the
total flow (F), the southerly shear vorticity (ZS), the west-
erly shear vorticity (ZW) and the total shear vorticity (Z).
Overall, the indices can be derived from the mean sea level
pressure (MSLP) measurements on a 16 points grid system
with about 5–10 latitude–longitude spacing. Several authors
have investigated the use of weather type in different
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regions with similar results showing the potential to
improve weather classification for climate modelling such
as Baltaci et al., 2014; Calvo et al., 2012; Kenawy et al.,
2014; Lee & Sheridan, 2012; Riediger and Gratzki, 2014.

In this study, we investigated the potential of using
weather type approach with dynamical downscaling
scheme optimisation as illustrated by the Figure 1. We used
ERA-40 Interim combined with the Automatic AMEDAS
to classify weather type. Then, for each weather type, we
produced an ensemble of forecasts with different associa-
tions of the planetary boundary, micro-physics, cumulus
and radiative cumulus schemes for the cyclone, hybrid,
westerly and north-westerly wind weather types. We cre-
ated a 24 multi-physics ensemble using 2 pbl, 2 cu, 3 mp
and 2 radiation (ra) schemes that we validated against rain-
fall station observations. A downscaling resolution of
27 and 9 km (Figure 2) was chosen because of the down-
scaling ratio that, allows cumulus scheme parametrisation
to operate (i.e. <10 km).

This paper focuses on the statistical characterisation per-
formance of the skill of various WRF configurations to

simulate extreme events in the region of Tokyo. As such,
the evaluations are performed over 75 observations stations
which cover the region surrounding Tokyo. We used Japan
as an illustration of the weather type “clustering-bias” cor-
rection method divided into 25 observations stations for cal-
ibration and 50 stations for validation, mostly centralised on
the south east side of Japan in the area of weather type grid
computation. Our study specifically targets heavy rainfall
event.

The Section 2 gives a description of the data sets used
in the study. The weather type method, the WRF model set-
up and the bias correction method are all presented in
Section 3. In the Section 4, the results are described and
then, discussed in Section 5 with the methods used for bias
correction and weather type selection.

2 | DATA: OBSERVATION AND FORECAST DATA

We use two on-line source data sets for our analyses: (a) the
Automated Meteorological Data Acquisition System
(AMEDAS) provided by the Japanese Meteorological
Agency (JMA); (b) the ECMWF Re-Analysis interim data
(ERA-interim) by the European Centre for Middle-range
Weather Forecast. We compiled the period of availability of
the data set in Table 1. The names and coordinates (lat-lon)
of the station used are presented in Tables 2 and 3 with
their name and latitude/longitude coordinates and localised
Figure 3 with the WRF forecast grid. The AMEDAS is a
network of automatic gauge station spread over Japan with
an average density of one station per 17 km2 provided by
the JMA. The ERA-interim data is one of the global
gridded data sets that provide MSLP in a concise manner
similarly to the National Center for Environmental Protec-
tion (NCEP, USA) or the Japanese Re-Analysis (JMA,
Japan).

FIGURE 1 Shematic of the research framework. We highlight the data
sets used (white-blue), the models (red boxes), and post-processing of
calibration/validation (Grey boxes). ERA, European Re-Analysis; GFS,
Global Forecast System; AMEDAS, Automated Meteorological Data
Acquisition System; NOAA, National Oceanic and Atmospheric
Administration; JMA, Japanese Meteorological Agency

FIGURE 2 Illustration of the dynamic
downscaling nested domain. The Global
Forecast System, GFS, is 0.5� resolution while
the domain 1 and 2 are 27 and 9 km
respectively
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3 | METHODS

3.1 | Weather type classification

The computation of weather type can be achieved by either
subjective or automatic weather pattern determination. We
use the MSLP as part as the ERA40-interim data to define
weather types. The German Weather Agency based on
LWT (Lamb, 1972) defined types classification. The
method required the computation of the six parameters to
allow the determination of eight purely wind direction and
two types based on vorticity intensity. Also, a “hybrid”
label is defined when a clear difference between purely lam-
inar flow and vorticity was not identified. Trigo and

TABLE 2 Name (English translation and original Kanji name from JMA
database) and location of the calibration stations

Station name
Japanese Kanji
name (JMA database) Longitude Latitude

Shizuoka 静岡 138.4 36.0

Ajiro 網代 139.1 35.0

Mishima 三島 138.9 35.1

Ikawa 井川 138.2 35.2

Omaezaki 御前崎 138.2 34.6

Yokohama 横浜 139.7 35.4

Odawara 小田原 139.2 35.3

Miura 三浦 139.6 35.2

Tsujido 辻堂 139.5 35.3

Sagamiko 相模湖 139.2 35.6

Tokyo 東京 139.8 35.7

Edogawa Linhai 江戸川臨海 139.9 35.6

Ome 青梅 139.3 35.8

Ogouchi 小河内 139.1 35.8

Fuchu 府中 139.5 35.7

Chiba 千葉 140.1 35.6

Tateyama 館山 139.9 35.0

Katsuura 勝浦 140.3 35.2

Abiko 我孫子 140.1 35.9

Choshi 銚子 140.9 35.9

Kumagai 熊谷 139.4 36.2

Tokorozawa 所沢 139.4 35.8

Chichibu 秩父 139.1 36.0

Kuki 久喜 139.6 36.1

Koshigaya 越谷 139.8 35.9

Note. JMA = Japanese Meteorological Agency.

TABLE 1 Available data-set used for the study

Data set Provider Date available
Duration
(years)

ERA40-interim ECMWF January 01, 1979 to March 31, 2016 38

GFS NOAA October 10, 2006 to October 15, 2016 11

AMEDAS JMA January 01, 1978 to December 31, 2016 39

Note. AMEDAS = Automated Meteorological Data Acquisition System;
ECMWF = European Center for Medium-Range Weather Forecasts; ERA =
European Re-Analysis; GFS = Global Forecast System; JMA = Japanese Meteo-
rological Agency; NOAA = National Oceanic and Atmospheric Administration.

TABLE 3 Name (English translation and original Kanji name from JMA
database) and location of the validation stations

Station name
Japanese Kanji
name (JMA database)

Longitude
(deci)

Latitude
(deci)

Shizuoka Airport 静岡空港 138.2 34.8

keyhole 大山 138.3 35.1

Mikura 三倉 137.9 35.0

Shimizu 梅ケ島 138.3 35.2

Fuji 富士 138.7 35.2

Soil fertiliser 土肥 138.9 34.9

Amenroyama 天城山 139.0 34.9

Hakone 箱根 139.0 35.2

Lake Tanzawa 丹沢湖 139.0 35.4

Lake Sagami 相模湖 139.2 35.6

Hiratsuka 平塚 139.3 35.3

Sagamihara Central 相模原中央 139.4 35.6

Enoshima 江ノ島 139.5 35.3

Hiyoshi 日吉 139.7 35.6

Ozawa 小沢 139.1 35.7

Chofu 調布 139.5 35.7

Setagaya 世田谷 139.6 35.6

Haneda 羽田 139.8 35.6

Nerima 練馬 139.6 35.7

Three peaks 三峰 138.9 35.9

Kamiyoshida 上吉田 139.0 36.1

Urasan 浦山 139.1 35.9

Tokigawa ときがわ 139.2 36.0

Hanno 飯能 139.3 35.8

Konosu 鴻巣 139.5 36.1

Saitama さいたま 139.6 35.9

Sawan 鋸南 139.8 35.1

Otaki 大多喜 140.2 35.3

Kisarazu 木更津 139.9 35.4

Mobara 茂原 140.3 35.4

Funabashi 船橋 140.0 35.7

Narita 成田 140.4 35.8

T�ozo 東庄 140.7 35.8

Bando 坂東 139.9 36.0

Edogizu 江戸崎 140.3 36.0

Joso 常総 140.0 36.1

Tsuchiura 土浦 140.2 36.1

Kogi 門井 140.0 36.3

Minori 美野里 140.3 36.2

Furukawa 古河 139.7 36.2

Hokota 鉾田 140.5 36.2

Koseki 古関 138.6 35.5

Fuji Mountain 富士山 138.7 35.4

Katsunuma 勝沼 138.7 35.7

In the mountains 山中 138.8 35.4

Kawaguchiko 河口湖 138.8 35.5

Otsuki 大月 138.9 35.6

Uenohara 上野原 139.1 35.6

Note. JMA = Japanese Meteorological Agency.
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DaCamara (2000) set the six parameters (Equations (1)–(6))
needed for the weather type determination such as the
Southern Flow (SF), the Westerly Flow (WF), the Westerly
Shear Vorticity (ZW), the Southerly Shear Vorticity (ZS),
the Resultant Flow (RF) and the Total Shear Vorticity (Z).

SF= 1:35
1
4

p5 + 2p9 + p13ð Þ½ −
1
4
p4 + 2p8 + p12ð Þ� ð1Þ

WF=
1
2
p12 + p13ð Þ− 1

2
p4 + p5ð Þ

� �
ð2Þ

ZW=1:12
1
2

p5 + p16ð Þ½ −
1
2
p8 + p9ð Þ�

−0:91
1
2

p8 + p9ð Þ½ −
1
2
p1 + p2ð Þ�

ð3Þ

ZS=0:85
1
4
p6 + 2p10 + p14ð Þ− 1

4
p5 + 2p9 + p13ð Þ

� �

−
1
4

p4 + 2p8 + p12ð Þ½ +
1
4
p3 + 2p7 + p11ð Þ�

ð4Þ

RF= WF2 +SF2
� �0:5 ð5Þ

Z= ZS+ZWð Þ ð6Þ
where p1, p2 ... p16 indicates the pressure points which are
used to compute the weather type categories (el Kenawy
et al., 2014). Then, pressure grid is defined with a 5� resolu-
tion between the coordinates 132�–147�E and 25�–45�N,
for the period 1979–2016, and computed daily. The criteria
used are summarised in Table 4.

As mentioned early, the flow strength (F), the vorticity
(Z) and the mean direction (D) are computed from the pres-
sure points. Then, we can determine if the weather type is
mainly purely directional (N, NW, W, SW, S, SE and E) if
it present a strong vorticity component cyclonic or anticy-
clonic) or if none of those categories (“Hybrid”) as

TABLE 4 Summary of classification of weather type clustering: purely
directional, cyclonic, anticyclonic and hybrid

Class Criteria

Purely directional (SE, E, NE, N, NW, W, SW, S) |Z| < F

Cyclonic |Z| > 2F, Z > 0

Anticyclonic |Z| > 2F, Z < 0

Hybrid cyclonic and hybrid anti-cyclonic F < |Z| < 2F

FIGURE 3 Regional forecast grid and weather stations locations used for
the calibration of optimal scheme and the validation. Smaller
Figure indicated the location of the mean sea level pressure (MSLP) grid
points used for weather type computation. The names of the validation
station were omitted due to space limitation

FIGURE 4 Cluster classification of rainfall retrieved in Automated Meteorological Data Acquisition System for the 10 study stations in Japan during the
period 1979–2014. (a) Shape vs. scale plot of rainfall events for each station per weather type. (b) Interpretation of the rainfall type from a majority of
extreme events towards fewer events. (c) Illustration of the clusters, where a cluster may enclose several cities (Vuillaume & Herath, 2016)
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described by Jenkinson and Collison (1977). Previously, we
evaluated the shape and scale signatures (Figure 4) of
extreme rainfall events for 11 major urban area in south-east
Japan as illustrated by the Figure 3. The computation of
weather type in this region indicates that only cyclonic,
hybrid, northwesterly and westerly are associated with
heavy rainfall and represents potential clusters of rainfall
pattern in term of scale and shape signatures (Figure 4). The
results determine the most important weather type associ-
ated with extreme events in this area (Vuillaume & Herath,
2016). Therefore, we consider the cyclone (C), the hybrid

(H), the northwesterly (NW) wind and the westerly
(W) wind.

We illustrate the summary of the results of the weather
type determination in Figures 5 and 6. Figure 5 illustrates the
distribution of weather type event (Figure 5a) and their con-
tribution in percentage of water volume by type of weather
type (Figure 5b). Therefore, cyclone, hybrid, south and south-
westerly were identified as the major contribution of rainfall
in volume for Tokyo station. Furthermore, our results indicate
that cyclonic, hybrid, northwesterly and westerly types are
associated with >100 and >150 mm/day heavy rainfall event
in the South East region of Japan (Figure 6).

FIGURE 5 (a) Occurrence of weather types in Tokyo for 1979–2014. (b) Rainfall for each weather type as a percentage of the total in Tokyo. Hybrid
corresponds to a system with a circulation flow between purely directional flow and shear flow (Vuillaume & Herath, 2016)

FIGURE 6 Frequency of extreme event per weather type at the meteorological stations located in major Japanese urban centres. (a) Frequency of event
larger than 100 mm/day. (b) Frequency of event larger than 150 mm/day. From Vuillaume & Herath, 2016
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In this study, we focused on the extreme rainfall events
generated by the cyclone, hybrid, northwesterly and west-
erly wind weather types, respectively. We used the heaviest
rainfall occurring between October 2006 and June 2016
recorded in the AMEDAS observation database station of
Tokyo. Then, we retrieved the corresponding Global Fore-
cast System (GFS) from National Oceanic and Atmospheric
Administration (NOAA) archive data to pre-processed the
WRF model. The Table 5 lists the case studies date used for
the dynamical downscaling experiments.

3.2 | Dynamic Downscaling and regional rainfall
forecast

Several publications emphasised on the optimisation of
available micro-physics and cloud parametrisations to deter-
mine the best suitable combination for the location studied.
We used the WRF version 3.8 model to predict the rainfall
distribution intensity in the region around Tokyo area. The
data provided by the GFS are used with a 3-hr interval. The
data were ingested in the Weather Pre-processing System
version 3.8. We did not investigate the effect of data assimi-
lation system and the Weather Research and Forecasting
Data Assimilation (WRFDA).

The model was simulated for 1 day and match the rain-
fall observation time recorded on the Japan AMEDAS
gauge system at Japan Summer Time (JST). The Dynamical
downscaling downscaled the GFS from about 55 km resolu-
tion to 27 km and 9 km. We used this resolution as a com-
promise between reaching the convection scale (<10 km)
and took benefit of the cumulus scheme effect. Also, the
limitation of computing power constrained the number of
cases to be run (24 × 20 = 480 simulations).

Moreover, this study used a 24 member ensemble as a
combination of two Planetary Boundary, three micro-phys-
ics, two cumulus and two radiative scheme, respectively.
The schematic Figure 7 illustrated the ensemble generation
of the WRF optimisation schemes. Moreover, the Table 6
provided detail explanation regarding acronyms and litera-
ture reference to the physical schemes.

First, we designed the physical schemes with the average
performance of 25 gauge stations around Tokyo (Location
can be seen on Table 2). We identified the optimal scheme
as the one who presents the lowest average rainfall error
among five extreme events per weather type considered.

Therefore, we identified four optimal schemes, one per
weather type. Then, a bias correction curve was computed
using the WRF forecast result and the observation for the
optimal scheme. Finally, we validated the corrective bias
curve on 50 stations that are not part of the calibration pool.

3.3 | Bias correction

Bias correction has been used for rainfall forecast and cli-
mate modelling and projection for a long time. In both
fields, rainfall is often underestimated by prediction model
mainly due to coarse resolution and parametrisation, there-
fore, bias correction is necessary. However, rainfall climate
change bias correction has got stronger attention expect for
recent seasonal forecast bias correction. For this purpose,
we used a classic gamma–gamma type correction as correc-
tion method to investigate the potential of the dynamics
downscaling clustering methods.

The method used is based on the bias correction of the
cumulative probability distribution of rainfall. The curve
constructed based on 25 observation station is well approxi-
mated by a gamma–gamma function. Two curves are con-
structed, one for the observed rainfall and one for the WRF
forecast rainfall. Then, corrective coefficients are derived
from the corrections which are also correlated to the shape
and scale of the rainfall described in the cluster rainfall defi-
nition. Therefore, correction curves are constraint by
extreme rainfall signature which differs amount the cluster
as seen previously on Figure 4.

TABLE 5 Date of events used for dynamic downscaling

C H NW W

Date
Cum.
rain (mm) Date Cum. rain (mm) Date Cum. rain (mm) Date

Cum.
rain (mm)

October 06, 2014 123.5 September 17, 2015 74.5 October 13, 2014 49 October 05, 2014 148.5

October 16, 2013 176.5 September 09, 2015 156.5 June 06, 2014 123.5 October 15, 2013 69.5

May 03, 2012 121.5 July 03, 2015 67.5 September 15, 2013 78 January 14, 2013 64

September 21, 2011 124 December 03, 2010 76 April 04, 2013 53.5 August 05, 2008 111.5

September 08, 2010 102 October 27, 2007 88.5 August 10, 2009 111.5 December 26, 2006 154.5

FIGURE 7 Weather research and forecasting (WRF) dynamical
downscaling schemes optimisation tree. YSU, Yonsei University scheme;
MYJ, Mellor-Yamada-Janjic scheme; WSM3, WRF single-moment 3-class
scheme; WSM5, WRF single-moment 5 class scheme; WDM5, WRF
double-moment 5-class scheme; KF, Kain-Fritsch scheme; BMJ, Betts-
Miller Janjic scheme; Dudhia, Dudhia shortwave scheme; RRTMG,
shortwave and longwave scheme
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We summarised below the steps used for bias
correction:

1. We divided the rainfall stations into calibration (25) and
validation (50) sets.

2. For both observed and forecast rainfall, we computed
the shape and the scale of the rainfall for each cluster.

3. We estimated the correction coefficient by the one used
to fit the forecast to the observed rainfall.

4. We assessed the performance of the correction on the vali-
dation set with rainfall root mean square error (RMSE)
between 25 locations of AMEDAS station observation
compared to interpolated WRF forecast outputs.

4 | RESULTS

The results obtained are discussed in two sections: (a) the
scheme optimisation and calibration per weather type
(b) the bias correction of weather type-based forecasts.

4.1 | Scheme optimisation and calibration

We performed an ensemble of 24 members WRF run tested
on 20 extreme events case for a 1-day lead time forecast
with a nested domain centred on the region of Tokyo. We
used a 9-km grid resolution and included convective cumu-
lus schemes. We compare the results of the WRF run with

observation station at 25 locations (see Figure 8) and the
relative average error (in % of RMSE) for the ensemble
of 25 stations estimated. The results obtained show a
strong difference between weather absolute error larger
than the variance of the absolute error among one
weather type.

Our results suggest that weather type classification
strongly influences the bias error. We notice that, variations
among a weather type exist, but with limitation. The low
variability of rainfall within a weather type is suggested by
the low standard deviation value in Table 7. The table sum-
marises the main results obtained from the scheme optimisa-
tion. Therefore, the average bias error for the cyclone,
hybrid, northwesterly and westerly is estimated to 60.7,
34.2, 65 and 37.4%, respectively. We establish the optimal
WRF result for each weather type such as YSU BMJ
WSM3 Dudhia, MYJ KF WDM5 RRTMG, MYJ KF
WSM5 Dudhia and YSU KF WSM5 Dudhia corresponding
to C, H, NW and W weather type, respectively.

Also, we computed the ensemble score during single
events such as the probability of schemes reaching rainfall
above 50 mm/day. The result of the analysis is illustrated
Figure 9. The shape of the rainfall pattern can be appreci-
ated as well as the capacity of the majority of the physical
schemes to predict similar events. Limited rainfall event
present large difference subject to controversy area where
probability rainfall is reaching only 50% such as C
September 21, 2011, H September 17, 2015, H September
09, 2015. Moreover, it also indicated low-quality forecast of
the GFS data as seen for the W August 04, 2008 event.
Low probability of the ensemble, whereas 111.5 mm cumu-
lative daily rainfall were recorded in Tokyo. However, it
mainly gave indications on the quality of the schemes to
reproduce an event in a consistent way.

Furthermore, we appreciated the weather type classifica-
tion quality by the winds direction indicated in each figure.
Therefore, westerly and northwesterly wind are well repre-
sented in the two last columns of the Figure 9. However,
we performed weather type classification on a larger grid
that encompasses the whole region of Japan. It is supposed
to be valid at the scale of the region of south-east Japan as
suggested by the Figure 9 in particular for NW and W wind.
At the scale of cyclone and hybrid, we observed local wind
direction organisation such as the H December 02, 2010
(local Southern winds). However, larger features confirmed
a Hybrid weather type situation. This scheme optimisation
analysis will later be used as a calibration step for the bias
correction analysis later.

Finally, the Figure 10 illustrates the average perfor-
mances of the bias correction. While both the cyclone and
north-westerly bias correction highlight clear skills on 10a
and 10c, other weather type seems to indicate limited poten-
tial of improvement (Figure 10b and d). Therefore, the
Cumulative Probability Distribution Function bias error suf-
fers from similar limitation as for the global correction

TABLE 6 Summary of the weather research and forecasting (WRF)
parametrisations used in this work (from http://www2.mmm.ucar.edu/wrf/
users/phys_references.html)

Label Type Description

YSU Planetary
boundary
layer (PBL)

Yonsei University PBL scheme (Hong et al.,
2006) Non-local diffusion scheme.

MYJ PBL Mellor-Yamada-Janjić Scheme, Viscous
sublayer, and turbulence closure schemes
(Janjić., 1994).

KF Cumulus Kain-Frisch cumulus scheme (Kain 2004).
Mass-flux scheme able to accumulate
CAPE.

BMJ Cumulus Betts-Miller-Janjic convection scheme (Janjic
2000). Deep layer control scheme unable to
accumulate CAPE.

WSM3 Microphysics WRF Single-Moment micro-physics
parametrisation (Hong et al., 2004) with
three species (vapour, cloud water/ice and
rain/snow).

WSM5 Microphysics Similar to WSM3 with two more species
(vapour, cloud water, cloud ice, rain and
snow are treated independently)

WDM5 Microphysics CAM V5.1 two-moment five-class Scheme,
Eaton, Brian (Lim & Hong., 2010).

Dudhia Radiation Numerical study of convection observed during
the Winter. Monsoon Experiment using a
mesoscale two-dimensional model (Dudhia.,
1989).

RRTMG Radiation Radiative forcing by long-lived greenhouse
gases Calculations with the AER radiative
transfer models (Iacono., 2008).
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approach such that a positive average improvement vali-
dated by the Figures 8 and 10 does not necessary translate
with individual stations improvement.

4.2 | Bias correction and validation

We used 50 station for validation of the bias correction. The
bias correction curves are illustrated in Figure 10 and noted
in 10a–d and were computed with 25 calibration stations.
First, we can appreciated the difference between the bias
correction curve. Both the cyclone (Figure 10a) and north-
westerly (Figure 10c) present a corrective factor that
increases with the rainfall. The cyclone curve presenting the
higher bias as suggested by the Figure 10 and the summary
Table 7. Moreover, the hybrid (Figure 10b) and westerly
(Figure 10d) present both an inversion at about 80 mm that
indicates a negative corrective bias error for rainfall below
80 mm/day and a positive bias correction for rainfall above
80 mm/day. The difference between the shape of the bias
correction curve compared to raw WRF forecast advocates
in the use of clustering method for optimisation that can
give guideline in the (a) Optimal scheme to use (b) the con-
struction of specific bias correction curves.

Figure 10 illustrates the result of the bias correction on
the validation stations classified in cyclone (Figure 10e),
hybrid (Figure 10f), northwesterly wind (Figure 10g) and
westerly wind (Figure 10h). The result of the trend estima-
tion is summarised in the Table 8. In general, a gain of the
trend of 0–0.2 is observed that can indicate a gain of 0–20%
in rainfall quantity correction. However, the average rela-
tive Root Mean Square Error (rRMSE) computation indi-
cates an improvement of cyclone rainfall estimation of
17.8% while a quality decrease of all the others weather
type (19.6, 8.5 and 8.1% for hybrid, northwesterly and
westerly, respectively). This result indicates the limitation
of a simple bias correction method based on cumulative
PDF correction.

5 | DISCUSSION

5.1 | Classification methods

The weather type classification methods are practical and
robust methods based on the wind direction and cyclonic/
anticyclonic weather dynamic. Therefore, the weather type
can easily be viewed with it rainfall distribution. However,
this classification does not take into account the full com-
plexity of the weather system which can be better captured
by a multi-parameters approach such as a combination of
(a) the bottom of the stratosphere (≈200 hPa) and (b) the
lower troposphere layer circulation and (c) the outgoing
long-wave radiation (OLR) used for self-organised map
described by the COST733 project: Harmonisation and
Applications of Weather Type Classifications for European
regions which conducted well documents reports and pub-
lication on the potential of weather typing for climate
study. The project also involves the development of a
weather type classification software over Europe using
k-mean cluster classification based on multiple physical
variable (COST, 2010). This approach was not tested in
this research. However, Vuillaume (2015) discussed that
LWT cluster Lamb (Lamb, 1972) presented a satisfying
multi-parameters information classification. Moreover, spe-
cific humidity, temperature and mean velocity showed
a similar pattern as the rainfall volume discussed Figure 5.

Further studies will be conducted to investigate the per-
formance of self-organised map and bias correction method
for weather forecasts. Results obtained by Moron, Robert-
son, Ward, and Ndiaye (2008) on climate bias correction of
Global Climate Model give the indication of a “strong”
potential of the method. It should be noticed that self-
organised map required deeper regional atmospheric circula-
tion understanding to appreciate it full value. Therefore, a
comparison between the two classification systems should
be investigated.

FIGURE 8 Graphical bar summary of the performance of forecast schemes in root mean square error (RMSE). Forecast performances are averaged for
each weather type cluster. The yellow and green indicates the Cyclone (C), Hybrid (H), Northwesterly (NW) and Westerly wind (W), respectively
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5.2 | WRF model

The WRF is a widely used NWP model which gives
“acceptable” improvement of rainfall forecast estimation
compared to the global models such as the NOAA and the
ECMWF global model. However, the selection of the physi-
cal scheme is an expensive work, in particular for regions
where weather is complex, such as Japan with usually a
mid-latitude climate combined with seasonal tropical
cyclones. The model experience continuous update of its
physical scheme and therefore, new ones can always be
subject to new study (For example, The WRF3.8 WRF ver-
sion 3.8 presented a new Tiedke cumulus scheme, WRF
manual).

We used the GFS data provided by the NOAA agency.
We considered the ECMWF forecast data as an alternative.
Furthermore, Vuillaume (2015) indicated that the ECMWF
global rainfall forecast presented higher skills for rainfall
prediction. However, the data provided by the ECMWF
centre were not sufficient to able the WRF model to run
dynamical downscaling.

High-Performance Computing system is required to cre-
ate a large ensemble of case studies and increased the size

of the physical ensemble. Therefore, this research addressed
a limited number of physical schemes (24 members) that
could be extended to enclose the most recent micro-physics,
planetary Land Boundary and Cumulus schemes.

However, extreme rainfalls are limited events, in partic-
ular between 2006 and 2016 the range the available GFS
data. Further, even more, limited weather situation are clas-
sified by small occurrences such as westerly. Therefore,
westerly events which reached 100 mm/day were limited.
Then, the extension of the number of cases will be limited,
and we should considered a new GFS data set.

5.3 | Station-based performance

While the cyclone and northwesterly bias correction, high-
light clear skills on Figure 10a, the hybrid and westerly
weather type present very limited improvement (Figure 10b
and d). Therefore, the Cumulative Probability Distribution
Function bias error suffers from similar limitation as for the
global correction approach such that a positive average
improvement validated by the Figures 10 and 8 does not
translate with individual stations improvement.

FIGURE 9 Ensemble rainfall forecast
probability and mean wind direction forecast
for the 20 extremes events date considered.
The yellow to blue colour scale indicates a
rainfall probability from 0 to 100% computed
from the 24 ensemble forecast. For clarity, we
classified the weather type in column and
labelled them as C, H, NW and W with their
respective date. The red cross indicates the
station locations used for performance
calibration. The arrow indicates wind direction
and intensity like in common weather chart. A
circle indicates a no wind preferences at that
location
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The evaluation of a pole of stations and the validation
of this performance on another pool of stations is the central
aspect of our optimisation scheme research. Hence, we eval-
uated the trends of the plots using observed vs. forecast.
However, schemes performances can vary spatially due to
local orography effect or the position of the station related,
for example to the coastline and the sea. Also, we evaluated
the performance of the bias correction spatially. Therefore,
we focused our attention on the performance of the

optimisation scheme per weather type on station (Figure 11
and 2, respectively) and therefore spatial distribution
(Figure 12). For instance, further aspects of the correction
were investigated such as the calibration and validation per-
formance at single stations and the spatial distributions of
the correction.

The Figure 11 illustrates the RMSE computed at each
station individually for each weather type-based event. First,
we observed wide disparities in performance between sta-
tion for different weather type system which indicates a
strong correlation between the stations and scheme optimi-
sation method. Secondly, while cyclonic and northwesterly
scheme remained the largest bias error weather type for the
majority of stations, Oguchi and Kuki show that the broad-
est error is observed for hybrid. Westerly presented the
lower rRMSE scheme for most of the station.

However, it is not possible to construct a good bias cor-
rection and optimised physical scheme at station based.
First, for practicality, scheme optimisation has to be valid

FIGURE 10 Illustration of the cumulative probability distribution function-based bias correction clustering for Cyclone (a), Hybrid (b), Northwesterly
(c) and Westerly wind (d) weather type. The corresponding raw weather research and forecasting (WRF) forecast vs. bias corrected rainfall forecast is
illustrated for C, H, NW and W in the subplot (e), (f), (g) and (h) respectively

TABLE 7 Summary results table of the root mean square error (RMSE) scheme optimisation classified per weather type

Weather type Cyclone (C) Hybrid (H) North-west (NW) West (W)

Optimal scheme YSU BMJ WSM3 Dudhia MYJ KF WDM5 RRTMG MYJ KF WSM5 Dudhia YSU KF WSM5 Dudhia

Absolute optimal RMSE scheme score (mm) 60.7 34.2 65 37.4

Absolute average score (%) 62.8 39.7 69.3 42.6

Absolute average standard deviation (%) 1.4 3.4 2.3 3.5

TABLE 8 Linear trends coefficient from validation stations classified per
weather type

Weather type
Cyclone
(C)

Hybrid
(H)

North-west
(NW)

West
(W)

WRF trend 0.5 0.4 0.1 0.4

Corrected trend 0.5 0.5 0.2 0.6

Average rRMSE
reduction (in %)

−17.8 19.6 8.5 8.1

Note. RMSE = root mean square error; WRF, weather research and forecasting.
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for a domain since running competing forecast for each
location will be costly. Also, bias correction curve required
several and since extreme events are limited data available
at one station will not be sufficient to build a calibration/
validation model for explicit stations.

Also, we plot the spatial distribution of the calibration
data for each weather illustrated by the Figure 12. We notice
the distribution of the bias error in the south-east of Japan.
Both cyclone (Figure 12a), hybrid (Figure 12b), northwest-
erly (Figure 12c) and westerly wind (Figure 12d) weather
type present a strong homogeneous bias error in agreement
with the bias correction curve illustrated Figure 10. Hence,
cyclone weather types presents a large RMSE error for the
majority of the stations, northwesterly weather types, pre-
senting the lowest RMSE among the weather types, while
the hybrid and westerly presents low to moderate RMSE
with a larger spread than cyclone and northwesterly.

Finally, the Figure 12 illustrates the performances of the
bias correction. While the cyclone bias correction highlight
clear skills on 12a. Other weather type presents clear loca-
lised improvement on East part of Kanto area (Figure 12b),
slight quality decrease (Figure 12c) and a mix behaviour
(Figure 12d). Therefore, the Cumulative Probability Distri-
bution Function bias error suffers from similar limitation as
for the global correction approach. A positive average
improvement validated by the Figure 8 and the Figure 10
does not translate with individual stations improvement. We
should, therefore, investigate a bias correction method that
could take into account larger spatial disparity in weather
systems such as a predictant–predictors approach method
(Statistical DownScaling Model, SDSM by Wilby &
Dawson, 2013) and the empirical statistical downscaling by
Benestad (2010). Furthermore, current weather forecast
suffer from limitation in their physics parametrisation and

FIGURE 11 Graphical bar summary of the optimal physical scheme in root mean square error (RMSE) for each calibration stations. Forecast performances
are average for each weather type cluster. The yellow and green indicates the Cyclone (C), Hybrid (H), Northwesterly (NW) and Westerly wind (W),
respectively

FIGURE 12 Spatial distribution of the absolute root
mean square error difference between weather research
and forecasting raw forecast and bias corrected forecast
(in %). We considered the validation stations classified
for Cyclone (a), Hybrid (b), North-westerly (c) and
Westerly (d) events. Blue, yellow and red indicates a
low, intermediate and large absolute bias error,
respectively
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grid spacing that still lead to bias error when compared to
observation station.

6 | CONCLUSIONS

In this study, we (a) estimate an optimal physical scheme
for each cluster (b) improve regional rainfall forecast by the
use of bias correction curves divided by weather type and
(c) evaluate the spatial variability of the bias correction.
This research links the weather cluster selection with a par-
ticular scheme and a particular rainfall bias correction.
Therefore, the results of this study recommend that, bias
correction can be partially corrected by taken advantage of
weather type classification.

We used 25 stations for the calibration and 50 stations
for the validation of the bias correction. We showed the
improvements obtained by the performance of the scheme
over several events and a pool of stations. However, we
focused on bias correction of extreme rainfall events in a
limited regional area and therefore stations showed a strong
variability in the optimisation of the scheme. Then, it also
affects the performance of scheme for other events than
cyclone system. Therefore, the following research should
focus on the bias correction methods and how to adapt it to
either specific stations or either used more complex bias
corrective methods.

Bias correction improves the quality of all the trend
between observed and forecast rainfall for each cluster by
about 10–20% depending on weather type. However, rRMSE
indicates that only the cyclone weather type improve by
20%. In addition, the bias reduction is mainly located east
side of Kanto area. The hybrid weather type present strong
localisation of improvement but resulting with a global
decrease of rainfall quality. For instance East and South part
were strongly improve while North West of Kanto strongly
degraded. The North westerly while presenting promising
potential based on the cumulative bias correction curve
(Figure 10) present a global and local degradation (Table 8
and Figure 12). The Westerly weather type exhibit complex
responses to the correction that indicate a slight improvement
at the central area but strong degradation westward of the
Kanto area, other region being unchanged.

Finally, we raised future questions by this study. First,
seasonal variation of weather type occurrence could be
investigated to determine its trends and add further value to
the forecast. Second, others region should be tested with
similar methods to confirm the potential of the method.
Third, we should investigate the impact of rainfall forecast
improvement on an operational flood alert system.

6.1 | Code availability

The WRF code is an open source code available at http://
www2.mmm.ucar.edu/wrf/users/download/get_source.html

6.2 | Data availability

All AMEDAS and GFS data are on public domain and can
be on JMA (http://www.jma.go.jp) and NOAA website
(https://www.ncdc.noaa.gov/data-access/model-data/model-
datasets/global-forcast-system-gfs).
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